Spreading the seeds of an idea: MND disease pathology

With motor neurone disease (MND), the muscle weakness almost always starts in a single part of the body, with the weakness then spreading to other muscles in an orderly fashion. Neurologists are usually quite good at predicting which muscles will be affected next, slightly less so at predicting when this will happen.

The physical changes on the outside will be reflecting events occurring in the ‘closed box’ that is the brain and spinal cord. The latest imaging techniques are starting to give us more of a picture of what’s happening in the central nervous system as the disease progresses, but further technological advances will still need to be made. The clearest picture still comes from the study of generously donated and incredibly valuable post-mortem tissue.

The second day of the Symposium saw researchers present in the Clinical-Pathological Correlates of Disease Progression session, focussing on how to understand disease progression, the role of prions in neurodegenerative diseases and the relationship between MND and frontotemporal dementia.Read More »

A PERK for neurodegenerative disease?

Our bodies need to be able to make new proteins, to maintain long term memory. So if the ability to make new proteins is switched off, does this cause Alzheimer’s Disease? New research findings published yesterday by scientists based in Leicester take us closer to answering this question. Journalist are describing this as a step forward for all neurodegenerative disease, so I wanted to explain what the researchers found, and what it might mean for MND.

What’s the story?

The activated form of a chemical called ‘eIF2’, is found in higher levels than normal in the brains of Alzheimer’s Disease patients. (In it’s turn, eIF2 is activated by an enzyme called PERK – hence the name of the blog post.. !).

Last month (September 2013) researchers found that genetically blocking the activation eIF2 prevented memory problems in a mouse model of Alzheimer’s Disease. The research published yesterday showed that in a mouse model of prion disease, chemically blocking eIF2 (as opposed to genetically blocking it) helped prevent the development of prion disease (Variant CJD or ‘mad cow disease’ is an example of a prion disease).

The chemical block was given to mice orally (one of way of doing this is to give it to them in their food). It got to the brain OK and effectively blocked eIF2, but the chemical did have serious side effects. So it’s a possible turning point for drug treatment for Alzheimer’s Disease and prion disease, but not the answer.

Read More »