Kennedy’s Disease vs ALS: How muscle patterns can aid diagnosis and perform as a novel biomarker

Researchers from University College London led by Dr Pietro Fratta and Dr John Thornton found that muscle imaging can help distinguish Amyotrophic Lateral Sclerosis (ALS) from Kennedy’s Disease based on the way specific muscle groups deteriorate in each condition. The method can also help assess the severity of the disease.

ALS is a rapidly progressing condition which affects both upper and lower motor neurones, leading to inability to move limbs and failure of breathing muscles at the later stages of the disease. The complex cause of this condition is not yet fully understood but is thought to be a combination of genetic and environmental factors. Kennedy’s Disease on the other hand is much slower in progression and severity and is primarily caused by a gene mutation.

Read More »

Picture of face and eye

Do the eyes have it? Could Resistant Nerves See Our Way to a Treatment?

The Science Show on ABC Radio National in Australia, features an interview with Professor Justin Yerbury on Saturday 17th August.

The article containing the interview titled ‘Resistant nerves could lead to treatment for neurodegenerative disease‘ is a fascinating insight into Prof Yerbury’s work on the  delicate balance of proteins in solution within our nerves and how this is interrupted in MND.

Read More »

Focusing on mitochondria – a potential target for early MND treatment?

Dr Arpan Mehta, one of our Lady Edith Wolfson Clinical Fellows, and his team at the Euan MacDonald Centre at the University of Edinburgh have recently carried out a systematic review and meta-analysis of the pre-clinical literature (studies using animal models) to assess the therapeutic potential of targeting mitochondrial dysfunction in MND, examining if these interventions significantly affect survival in animal models of the disease, and determining the most effective time to begin treatment.

Read More »

Could MND be treated by HIV drugs?

Recently published results from the open-label Lighthouse trial investigating safety of the drug Triumeq in people with MND revealed the treatment was safe and ready to progress to a larger Phase 3 clinical trial.

The trial was held in Australia and recruited 40 people with MND who all received the active drug; this was because the aim of the trial was to see whether Triumeq, which is already licensed to treat HIV, has a potential as a treatment for MND.

Why HIV drugs?

One of the possible triggers of MND has been suggested to be a group of ‘fossil’ viruses that, over many millions of years of evolution, have left traces of their DNA within our genome. When activated, these ‘retroviruses’ have the ability to merge into our cells, by copying their DNA into our genome, which leads to incorporation of the two DNAs into one. When the affected cell then creates new proteins, partial copies of the virus are produced with it.

Retroviruses have been linked to MND because of findings of a particular retrovirus, called human endogenous retrovirus (HERV-K), in the brains and motor neurons of people with the disease. Although some studies failed to confirm this finding, researchers deemed this to be a promising area of therapeutic focus.Read More »

How animals are helping to improve our understanding of MND

‘From antibiotics and insulin to blood transfusions and treatments for cancer or HIV, virtually every medical achievement in the past century has depended directly or indirectly on research using animals’ – from the Royal Society’s position statement on the use of animals in research.

We know that talking about using animals in research is an emotive topic. We appreciate that some people will never accept that using animals in research is necessary, and we understand that it is not our place to try and influence anyone’s opinion on the use of animals in research. The purpose of this blog is to explore how using animal models of MND can further our understanding of this devastating disease, and how animals make it possible for potential new treatments for the disease to move forward into clinical trials in people.Read More »

FaTHoM 2: UK-leading MND clinicians on inherited MND

After its successful premiere in 2017, the University of Oxford organised another meeting of people affected by inherited MND, called ‘Families for the Treatment of Hereditary MND (FaTHoM)’. This turned out to be yet another excellent day where MND clinicians-researchers presented on topics such as genetics of MND, genetic testing and gene therapies. Below you can find out more about what was presented on the day and links to the videos of recorded talks.

Understanding familial MND

Introducing the rationale of the meeting, Prof Martin Turner set the scene by explaining the great difficulty in understanding the disease due to its many possible causes. Being such long cells, many things can go wrong in the motor neurones and in the vast amount of their support cells (such as astrocytes or microglia). But one factor can help us understand the disease better – genes.

Around 5-10% of MND is considered familial. That is, around 1 in 15 people have had someone in their family affected by this disease in the past, making them more likely to develop the disease themselves. Specifically, if we consider the ‘multistep hypothesis’ of MND which assumes that six steps have to happen in our lifetime for the disease to develop, a mistake in a specific gene may reduce the number of the necessary steps to four or even two (read more about the impact of genetic on the multistep hypothesis here).Read More »

Microbiome: is the answer in our guts?

Exploring the link between our guts and our general health is becoming increasingly popular. Studies of people with various physical and mental health conditions suggest there may be an important link that has not yet been explored in MND.

Researchers are now looking closely into the association between our gut microbiome and our vulnerability to develop a range of psychological and neurological conditions, ranging from autism,  depression, schizophrenia, to multiple sclerosis, Parkinson’s disease and MND.

Now more than ever, research into finding out more about the impact of our microbiome on our mental and physical wellbeing is being carried out, with more than 80% of all scientific publications on gut microbiome being published after 2013. This surge of interest in the topic is quite optimistic and has the potential to  repair any functions affected by the ill-effects of gut imbalance.Read More »

Tofersen: antisense oligonucleotide drug shows promising results in Phase 1/2 trial

A recent press release by the pharmaceutical company Biogen reported preliminary results from an ongoing clinical trial investigating a form of precision therapy in people with SOD1-related MND. This drug, known as tofersen, is now in the final stages of Phase 1/2 testing in centres across the world, including Sheffield in the UK.

Tofersen is an antisense oligonucleotide (ASO), designed to prevent the faulty disease-causing protein from being made. Proteins, the building blocks of the body, are created from our genetic information (DNA) via its photocopy (RNA). If a piece of DNA is damaged, the RNA will also be damaged, leading to formation of a faulty protein and creating issues in the body. Tofersen is a synthetically-created RNA directed to stick to the faulty photocopy (RNA) preventing it from making faulty proteins.Read More »

Paving the way towards better clinical trials

“The annals of ALS clinical trials is strewn with failed studies. Only two out of more than 70 clinical trials have been positive, and even these showed only very modest benefit.  Is this dismal record strictly due to the extraordinary complexity of neurodegenerative disease in general, and ALS in particular?  Or is it due to methodological flaws that could be repaired?” 

Robert G Miller, Professor of Neurology, Stanford University

Although there is not much we can do about disease complexity, improving the way treatments are trialed is something that can be achieved. Imagine a world without clinical trials, where independent companies or individuals would be allowed to sell their self-made ‘drugs’ without any evidence that they were ever used on anyone with the disease, let alone that they would improve one’s condition. No one would know what the drug is (which could simply be a water solution), how it works and whether as soon as the drug is taken, we would be poisoned.

Thankfully, this is not the case and clinical trials, although not perfect, are considered the gold standard for approving any treatment.  However, there are still some improvements that can be done to make trials easier to access and provide more accurate estimates of drugs’ effectiveness much faster.

Read More »

Drug repurposing – harnessing the positive side effects of ‘old school’ drugs

Is it possible that a drug that treats congestive heart failure could improve respiration in people with MND? Or that a drug used to treat cancer could reduce motor neuron inflammation and possibly slow progression of the disease? In this blog we take a look at drug repurposing – using a drug developed to treat a particular disease to treat another that is unrelated – what it is, and what it might mean for people living with MND.Read More »