Kennedy’s Disease vs ALS: How muscle patterns can aid diagnosis and perform as a novel biomarker

Researchers from University College London led by Dr Pietro Fratta and Dr John Thornton found that muscle imaging can help distinguish Amyotrophic Lateral Sclerosis (ALS) from Kennedy’s Disease based on the way specific muscle groups deteriorate in each condition. The method can also help assess the severity of the disease.

ALS is a rapidly progressing condition which affects both upper and lower motor neurones, leading to inability to move limbs and failure of breathing muscles at the later stages of the disease. The complex cause of this condition is not yet fully understood but is thought to be a combination of genetic and environmental factors. Kennedy’s Disease on the other hand is much slower in progression and severity and is primarily caused by a gene mutation.

Read More »

How animals are helping to improve our understanding of MND

‘From antibiotics and insulin to blood transfusions and treatments for cancer or HIV, virtually every medical achievement in the past century has depended directly or indirectly on research using animals’ – from the Royal Society’s position statement on the use of animals in research.

We know that talking about using animals in research is an emotive topic. We appreciate that some people will never accept that using animals in research is necessary, and we understand that it is not our place to try and influence anyone’s opinion on the use of animals in research. The purpose of this blog is to explore how using animal models of MND can further our understanding of this devastating disease, and how animals make it possible for potential new treatments for the disease to move forward into clinical trials in people.Read More »

Kennedy’s Disease: focus on muscle damage reveals key biomarker

Findings from the largest biomarker study of people with Kennedy’s Disease, published in the journal Neurology, found a predictive biomarker to help in differential diagnosis and tracking clinical progression. Led by Dr Pietro Fratta from University College London, the research team highlighted the importance of markers of muscle mass rather than neuronal damage in Kennedy’s Disease, differentiating it from the slightly more common motor neurone disease (MND).

Kennedy’s Disease, also known as Spinal and Bulbar Muscular Atrophy (SBMA), is a rare genetic condition that leads to progressive weakening and wasting of muscles, particularly affecting the limbs and bulbar region. Caused by a mistake on the AR (androgen receptor) gene (positioned on the X chromosome), this condition mainly affects males, with a 50% chance of receiving the affected gene from their mothers (women can only be carriers of the genetic mistake without developing the disease).

Read More »

Tissue biomarkers: Highlights from Glasgow

This blog is part of the ‘Highlights from Glasgow’ collection of articles, where you can read about the content of some of the talks and posters presented at the 29th International Symposium on ALS/MND.

Around the globe, teams are working to find tissue biomarkers for MND and there some promising candidates coming through, some of which were explored at session 8C of the Symposium: Tissue Biomarkers.

We first heard from Rebekah Ahmed (C83), who presented her data on possible neuroendocrine and metabolic biomarkers. Ahmed and her team analysed several proteins related to these systems in the blood of 127 people with either MND or MND with FTD and compared them to controls. The Neuropeptide Y protein (NPY), which is related to eating habits and food intake, was found to be higher in people with MND and MND-FTD, and lower in people with FTD, shining the light on a possible biomarker. All patients also had an increase in leptin and insulin levels, highlighting the need to examine how these neuroendocrine changes affect underlying disease pathology.Read More »

Technology and MND: Highlights from Glasgow

This blog is part of the ‘Highlights from Glasgow’ collection of articles, where you can read about the content of some of the talks and posters presented at the 29th International Symposium on ALS/MND.

Where to start on a subject as wide and varied as technology and MND?

Indeed, this problem is not just limited to a simple blog post, it is a challenge for us as an MND charity faced with a proliferation of potentially beneficial technological developments in smartphones, wheelchairs, and exoskeletons to name but a few.

Fortunately, there is a fundamental question that can help us make sense of it all and it is a question that stems from our Association values – What does this mean for people with MND? I’ll be trying to answer this question as part of my summary of technology talks from our 29th International Symposium.

Much of the content that was presented related to the use of technology in clinical trials, so let’s start by considering clinical trials and what we want from them:

  • We want them to be efficient and report results quickly – this means they will be cheaper, so we can do more of them and secure a cure or effective treatment for MND more quickly.
  • We also want the trials to be reliable and give accurate results whilst allowing as much patient participation as possible.
  • Above all, we want trials to translate into tangible change such as clinical developments that improve quality of life or the introduction of an effective treatment for MND.

Read More »

MND research around the world

worldmap annotated and marked

In the last decade, the MND Association has invested millions in research within the UK and across the world. We are a leader in the funding and promotion of cutting-edge MND research and, with over 30 years experience of identifying the most promising projects, we only fund and support scientific and medical research of the highest quality and relevance to MND.

And the great news is, we are not the only ones!

alliance_logo_landscape_rightThe International Alliance of ALS/MND Associations has 54 member institutions, in 40 countries around the world – from Mongolia to Mexico, Malta to Malaysia – who are supporting, funding, collaborating in and carrying out MND research, and/or offering much needed care and support to people with MND and their families.

All the institutions listed by the Alliance are shown on the map above. If you want to take a look at some of these, they are easy to access through the International Alliance website. Some of the websites are not in English but you can use the Google Translate Web tool to translate the entire site into English (or any other language).

So let’s take a whistle-stop tour and explore some of the latest research and support projects that other institutions around the world are involved in. The institutions I mention are shown on the map with a yellow pointer.Read More »

AMBRoSIA and NECTAR – Make your mark on MND

It has been almost a year since we announced that AMBRoSIA (A Multicentre Biomarker Resource Strategy In ALS) had begun to recruit participants (read the Autumn 2017 edition of Thumbprint).

AMBRoSIA is the biggest project that the MND Association has ever funded and recruitment occurs at three sites throughout the UK (Sheffield, headed by Prof Dame Pam Shaw, Oxford, headed by Prof Martin Turner and London, headed by Dr Andrea Malaspina).

The project will collect a number of biological samples, including blood, cerebrospinal fluid (CSF), urine and skin in order to identify biomarkers (markers of biological change) that could be a signature of MND.Read More »

Lighthouse Project shines a beacon on HERVs and their role in ALS

There is recent evidence to suggest that Human Endogenous Retroviruses (HERVs) may be involved in amyotrophic lateral sclerosis (ALS). HERV-K has been directly linked to motor neurone damage and has been found in the brain tissue of patients with ALS.

The MND Association recently awarded a small grant to fund part of the ‘Lighthouse Project’ which is investigating the safety and any beneficial effects of an antiretroviral drug on ALS symptoms.Read More »

Life of an MND researcher: part 1

Each year, the MND Association dedicates the month of June to raising MND awareness. This year, we focus on the eyes – in most people with MND the only part of their body they can still move and the only way left for them to communicate. Alongside the Association-wide campaign, the Research Development team selected six most-enquired about topics, which we will address through six dedicated blogs.

We all know that rigorous research is the key to finding a cure for MND. Scientists are working hard every day to find the causes of MND, developing new treatments that would help tackle the disease and also looking for new ways to improve the quality of life of people currently living with the disease. But what does it take to have research at heart of everything you do? What is the typical day in the life of a researcher and what does carrying out a research study actually involves?

We asked eight researchers to give us an idea of what their research is all about and what their typical day looks like. Read about four of them in the following blog and keep an eye out for ‘Part 2: PhD edition‘ in the next few days…Read More »

New urine-based biomarker opens a gate to improved tracking of MND

Researchers from the Flinders University, Australia and University of Miami have discovered a new protein that can act as a biomarker to track disease progression in people with MND. A paper written under the leadership of Dr Shepheard and Dr Rogers was published today in the research journal ‘Neurology’.


What is p75 and what do we know so far

mndassociationgeneral3The biomarker is a protein called p75, which initially
supports the growth of neurones during embryonic development and its levels markedly decrease after birth. Throughout our lives, p75 only reappears in higher levels when the body detects injury of the nervous system, and shows its presence in urine.

The researchers have previously shown that, after birth, mice with a mutation in the SOD1 gene, known to cause MND, had high levels of p75 after about 40 days from the onset of MND. This also coincided with increased levels of p75 in motor neurones found in tissue of people with MND after death.

Read More »