Motor neurone signalling and the effects of RNA in MND

Dr Pietro Fratta completed his first MRC-MND Association Clinical Research Training Fellowship in 2014. Last year he was awarded a new £1.16 million Clinician Scientist Fellowship to continue his research at University College London, studying the earliest physical changes that affect motor neurons in MND (our reference 946-795). Our contribution to this four year research fellowship is £280,000.

Pietro Fratta

Dr Pietro Fratta, University College London

As his first Fellowship progressed, Dr Fratta became more interested in the field of RNA biology, where he is rapidly establishing himself as an expert. His latest project aims to see whether RNA plays a pivotal role in the earliest signs of cellular damage that occur in MND.

RNA is the cell’s copy of our genetic material known as DNA; Dr Fratta is hoping to establish if the transport of RNA molecules along the nerve fibres is impaired and if so, whether there are particular versions of RNA that are particularly important for motor neurone health and survival.

Several lab studies have shown that the process of transporting things up and down the motor neurones is impaired long before the physical signs of damage are seen. His research will seek to find out what RNA molecules are present in both the cell body of the motor neuron and the nerve fibres. Continue reading

Investigating miRNAs as a biomarker for MND

There is a critical need to find a biomarker for MND to speed up diagnosis, monitor disease progression and improve clinical trials. A biomarker is a biological change that can be detected in a person to signal that they have MND, and that can be measured over time to monitor how the disease is progressing.

Previous research has suggested micro RNAs (miRNAs) present in the blood might be a biomarker for MND. miRNAs are short forms of RNA, the cell’s copy of our genetic material DNA. They are stable in the blood, can be easily measured with a blood test, and evidence suggests that they are linked to MND progression. To put it simply, if the biomarker hunt was a music festival, miRNAs would be a headlining act that a lot of people are excited about! Continue reading

Developing a blood test for MND by linking changes in the brain and spinal cord

Developing a way to rapidly diagnose and track how MND progresses over time is a ‘holy grail’ of MND research. The search for so called ‘biomarkers’ is an area that researchers funded by the MND Association are actively pursuing.

MND Association grantees Dr Andrea Malaspina and Dr Ian Pike (Blizard Institute, Queen Mary University of London) and Prof Linda Greensmith (University College London) are currently working on a project to find these biomarkers (our reference: 871-791). People with MND have been helping the researchers by regularly donating blood and spinal cord fluid samples.

QMUL-Blizad MND group

Queen Mary University of London (QMUL) Blizard Institute MND group

Continue reading

Raising the profile of Kennedy’s disease

Did you know the MND Association also supports people who have Kennedy’s disease?

In May a new clinic specialising in Kennedy’s disease opened in London at the National Hospital for Neurology and Neurosurgery.

To mark this big step in helping support and treat people with Kennedy’s disease, Katy Styles who campaigns on behalf of the Association, and whose husband Mark has Kennedy’s disease, thought it would be a great opportunity to raise awareness of this rare condition.

Katy and Mark Styles
Katy and Mark Styles

There is very low awareness of this disease amongst neurologists, healthcare professionals, the general public and within the Association itself. We do all we can to explain to everybody what Kennedy’s disease is and what it’s like to live with.

Due to the rarity of Kennedy’s disease you can feel very much alone. It is so great to be part of the MND family and the Association is key to this by making us feel part of a wider community.”

What is Kennedy’s disease?

Kennedy’s disease is a condition similar to motor neurone disease (MND) which affects motor neurones. It is sometimes called spinal and bulbar muscular atrophy (SBMA). Continue reading

New fellowship awarded to further our understanding of RNA in MND

Dr Pietro Fratta (University College London) received his initial Training Fellowship through the MND Association/ Medical Research Council (MRC) Lady Edith Wolfson Programme in 2010. Starting on 1 February 2015, Dr Fratta was awarded a Clinician Scientist Fellowship to continue his research into MND.


Totalling £1.16 million, of which the Association has committed to contribute £280,000, this new fellowship will allow Dr Fratta to find out what RNA molecules are present in both the cell body of the motor neuron, and the nerve fibres. Continue reading

On the fourth day of Christmas MND research gave to me: a new stem cell research project

“On the fourth day of Christmas MND research gives to you… on the FOURTH month of 2014, we announced that we’ll fund an exciting new stem cell project”

Prof Linda Greensmith, University College London

Prof Linda Greensmith, University College London

During our April Biomedical Research Advisory Panel Meeting we agreed to fund seven new MND research projects. These projects included Prof Linda Greensmith’s research on Restoring muscle function with transplanted stem-cell derived motor neurones.

Based at University College London, this study will use stem cell technology to restore muscle function in a mouse model of MND. The researchers will transplant stem-cell derived motor neurones and then guide them to where they’re needed using light.

Prof Greensmith and her team aim to restore function to the muscles that are responsible for breathing and develop an optical stimulator, which can then be implanted into the body to stimulate the transplanted cells for long periods of time. If successful, this technique could form the basis of future treatments that could potentially restore muscle function in MND.

Click here to read more about the research that lead to us funding this project

Toxic proteins may cause motor neurones to die in C9orf72 MND

MND Association and Alzheimer’s Research UK-funded researchers from University College London have identified that toxic proteins may cause motor neurones to die in C9orf72 MND and frontotemporal dementia. Published open access in the journal Science on Thursday 7 August, this research explains more about one of the most common forms of inherited MND.

The brain of a transgenic fruit fly Drosophila melanogaster, used to study neurodegenerative diseases, with cell nuclei (stained purple) and glial cells (green). Image courtesy of Teresa Niccoli, UCL Institute of Ageing, London, UK.

Continue reading

The ALS biomarkers study: a journey into the disease

Dr Andrea Malaspina is an Association-funded researcher investigating biomarkers, or ‘biological fingerprints’ of MND. Here he blogs about working with patients and basic science.

I regularly meet people living with MND due to my role as a Consultant Neurologist at the Bart’s and the London MND Care Centre and one of the most common questions I get asked is about getting involved in research. My research enables people living with MND to take part, therefore bridging the gap between the lab and the clinic.

Queen Mary University of London (QMUL) Blizzard Institute MND group

Queen Mary’s University of London (QMUL) Blizard Institute MND group

Continue reading

Switching the light on for MND

MND Association-funded researcher, Prof Linda Greensmith, based at University College London, together with her collaborator Dr Ivo Lieberam from Kings College London, have introduced stem cell-derived motor neurones into mice. Published in the prestigious journal Science on 4 April 2014, her research has also demonstrated that muscle function can be controlled by light.

Modelling MND

MND Researchers use a range of models to further our understanding of MND. These can be animal models, such as mice and zebrafish, or cellular models, such as induced pluripotent stem (iPS) cell-derived motor neurones (as described by Association-funded researcher, Dr Ruxandra Muthiac, during the Spring Conference in Newport on Sunday 6 April).

These models enable us to find out more about the causes of MND by studying how changes in the genes (our genetic makeup) give rise to MND. Not only this, models of MND are the essential ‘first step’ in screening potential new MND drugs before they go on to human trials.

Prof Greensmith and her team of researchers used an early stage mouse model of MND. By using this model she was able to investigate if embryonic stem cell-derived motor neurones could be successfully transplanted into mice and whether muscle function could be controlled by light.

Continue reading

Matrin 3 gene identified

Following on from our ’year of hope’ appeal last month an international team of researchers, including two funded by the MND Association, have identified mutations in the Matrin 3 (MATR3) gene as a cause of the rare inherited form of MND.

Medical Research Council (MRC)/ MND Association Lady Edith Wolfson Clinical Research Fellow Dr Pietro Fratta was involved in the research, which was published on 30 March 2014 in the prestigious journal Nature Neuroscience.

Inherited MND is a rare form of MND (5-10% of total MND cases) and the MATR3 gene is the latest to be identified. This rare form of MND is characterised by a family history of MND.

New gene, new gene

When a new gene is first identified this creates a great deal of ‘buzz’ amongst the MND research community, often generating more questions than answers:

  • How common is this inherited MND gene?
  • How does this gene cause MND?

This is the starting point for MATR3. Unfortunately, we just don’t know the answers to these questions at the moment. Hopefully MND researchers will now use the discovery of MATR3 to find the answers to these questions and further our understanding of this gene.

Continue reading